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AbstractðOne primary concern of engineers, particularly 
those dealing with target tracking and filtering, is effectively 
dealing with out-of-sequence measurements (OOSM). Recently, 
the use of Kalman filters has proven to be of great practical value 
in solving a variety of OOSM problems including multi-target 
tracking prediction. In this paper we argue that delayed and 
existing measurements are typically correlated and could be 
described by a joint distribution. Thus, the use of a copula-based 
approach will not only provide versatile means to model the 
dependence structure of both measurements but also handle 
OOSM effectively. Benchmarking results on simulated datasets 
show the use of copulas as more robust to handling OOSM as 
compared to current methods. 
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I.  INTRODUCTION (HEADING 1) 

Within the general framework of multi-sensor applications, 
a difficult step in target tracking and filtering (i.e., the process 
of maintaining state estimates of one or several instances or 
objects over a period of time) is the handling of out-of-
sequence measurements (OOSM). Most of the work on 
tracking and filtering has been based on the assumption that 
measurements are immediately available to an agent. 
However, it is not difficult to conceive situations in which 
measurements are subject to non-negligible delays such that 
the lag between measurement and receipt is of sufficient 
magnitude to have an impact on estimation or prediction. 
These measurements can be classified as either constant delays 
or random delays with the resulting occurrence of the latter 
having the potential to cause OOSM. 

Handling OOSM represents a challenge for engineers or 
researchers using multi-sensor target tracking data. The 
question is how to incorporate these OOSMs in a track that has 
already been updated with a later instance or observation in 
order to enhance the performance of the tracking system. 

A simple solution is to simply ignore (neglect) or discard 
the OOSM in the tracking process. The appropriateness of this 
approach is that it has a natural limitation in that critical 
information is lost due to the discarded OOSM and this can 
lead to degradation in tracking for time critical targets. Other 
approaches for dealing with OOSM include data re-processing 
or roll back and data buffering. In the rollback approach, 
sensor reports are stored in memory and the OOSM is used to 
re-order the sensor measurements in a track hypothesis. The 
data buffering approach holds the incoming measurements in a 
buffer with the size buffer greater than the maximum expected 
delay of arriving measurements. Both approaches require 
significant memory and storage measurements. Also, since the 
tracker processing always lags behind the current time, both 
approaches poses potential problems for real-time target 
applications. 

For time delays, one common approach for dealing with 
the OOSM problem is related to solving a partial differential 
equation and boundary condition equations which do not have 
an explicit solution in general [1; 2; 5; 6]. 

For random delays, the problem has been investigated via a 
standard Kalman filtering and by augmenting the system 
accordingly [3; 8]. Matveev and Savkin [10] consider an 
iterative form of state augmentation for random delays with a 
random lag. Mallick et al. [9] address the OOSM problem by 
recalculating the filter through the delayed period. In the same 
context, Larsen et al. [6] propose a measurement extrapolation 
approximation using past and present estimates of the Kalman 
filter (KF) and calculating an optimal gain for this extrapolated 
measurement (ME-KF). Thomopoulos and Zhang [13] 
examine the case of random delay under the name of fixed 
sampling and random delay filter (FSRD-KF) that is shown to 
be equivalent to constraining the lag to a value of 1. Later, 
Larsen et al. [6] suggest using delayed measurements to 
calculate a correction term and adding this to the filter 
estimate. Zhang et al. [15] proposed algorithms that try to 
minimise the information storage in an OOSM situation (MS-
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KF) Challa et al. [4] formulated the OOSM problem in a 
Bayesian framework (BF-KF). Twala [14] relates OOSM to 
the incomplete (missing) data problem and uses statistical 
multiple imputation to deal with OOSM. 

Although the vast majority of the above methods 
understand the solution, most of them fail to recognise the 
theoretical basis of the conditional distribution between the 
delayed measurements and the measurements that are already 
available (which are sometimes referred to as history). 

The major contributions and uniqueness of the work 
presented in this paper are as follows: 

1. We show the robustness of the top five techniques for 
handling OOSM in terms on predictive accuracy for 
multi-target tracking; 

2. We further show how copulas could be used to deal with 
OOSM and how the use of copulas lead to a significant 
improvement in classification performance for multi-
target tracking; 

The remainder of the paper is organised as follows. The 
copulas strategy is presented in the next section. Section 3 
empirically explores the robustness and accuracy of the 
proposed approach against existing methods for dealing with 
OOSM using simulated data. This section also presents 
empirical results from the application of the ensemble 
procedures. We close with conclusions and directions for future 
research 

II. THE COPULA STRATEGY 

A motivation for copulas is that it exists as a multivariate 
distribution function and allows a consistent and flexible 
modelling of the dependence structure of dealing with OOSM. 
It offers a convenient representation of arbitrary joint 
distribution functions, with the key property being that the 
specification of the marginal distributions and the dependence 
structure is separated. This is the most important result in the 
copula framework and is due to [12]. In recent years, copulas 
modelling has found many successful applications in actuarial 
science, survival analysis, hydrology, and with great intensity 
in finance [11]. 

The generalized copulas algorithm for handling OOSM is 
summarised in Figure 1. However, for a more detailed 
discussion of copulas the reader is referred to Sklar [11] and 
Nielsen [12] 

1. Consider a sequence of measurements up to k instances 
X1, X2,é, Xk (where k is the delay point) with 
distribution function H(x1,x2,é,Xk-1) = P (X1Òx1, X2Òx2,é 
XkÒxk) and univariate marginal distributions F1(x1), 
F2(x2),é,Fk(xk) 

2. A copulas C represents the joint cumulative distribution 
function in terms of the margins such that H (x1, x2,é, 
Xk-1)= C(F1(x1),é, Fk(xk)) for all values x1, x2 ,é, xk(or 

(X1, X2,é, Xkᶲᴘ
k
). 

¶ If F1, F2,é,Fk are continuous, C is unique for every 
fixed F and equals C(u1,é,uk) = F(F1

-1
(u1),é, Fk

-1
(uk)), 

where F1
-1
,é, Fk

-1
 are the quantiles functions given 

marginals and are uniform [0, 1] variables; 

¶ If the sequence of measurements (X1, X2,é, Xk) are 
independent then the copula function  that links their 
marginals is the product copula C(F1, F2, é, Fk) = 
F1*F2*é.*Fk 

¶ If C and F1, F2,é, Fk are differentiable, then the joint 
density f (x1, x2,é, xk) corresponding to the joint 
distribution F(x1, x2, é, xk) can be written as the 
product of the marginal densities and copula density 
f(x1, x2, é, xk) = f1(x1)x é x fk(xk) x c(F1, F2, é, Fk) 
where fi(xi) is the density corresponding to Fi and the 
copula density is defined as c = Ö

k
C/(ÖF1 é ÖFk). 

3. Find the conditional distribution F(xk|H) for delayed 
measurements conditioned to the history of 
measurements available as a predictive distribution; 

4.  Predict the delayed measurement from the conditional 
distribution (copula could be used to find both the joint 
and conditional distributions even if the joint distribution 
is unknown). 

Fig.1: The copulas algorithm for dealing with OOSM 

III.  EXPERIMENTS 

Before you begin to format your paper, first write and save 
the content as a separate text file. Keep your text and graphic 
files separate until after the text has been formatted and styled. 
Do not use hard tabs, and limit use of hard returns to only one 
return at the end of a paragraph. Do not add any kind of 
pagination anywhere in the paper. Do not number text heads-
the template will do that for you. 

Finally, complete content and organizational editing before 
formatting. Please take note of the following items when 
proofreading spelling and grammar: 

A. Experimental Set-Up 

In order to empirically evaluate the performance of the 
proposed copula-based OOSM approach (which from now on 
we shall call COOSM) against existing approaches for dealing 
with OOSM (FSRD-KF, ME-KF, SARD-KF, MS-KF and BF-
KF), experiments are used on simulated datasets in terms of 
root square mean error (RMSE). RMSE is a measure of the 
differences between values predicted by a model (or an 
estimator) and the values actually observed. The experiment is 
carried out in order to rank individual OOSM methods and 
also assess the impact of delayed measurements (at various 
time and distance intervals) on a single delay against COOSM 
in terms of position error. Like [4], we assume that the OOSM 
can only have a maximum of one lag delay and the data delay 
is uniformly distributed within the whole simulation period 
with probability Pr that the current measurement is delayed. 



All statistical tests were conducted using the MINITAB 
statistical software program. Analyses of variance, using the 
general linear model procedure were used to examine the main 
effects and their respective interactions. This was done using a 
three-way repeated measures design (where the effects were 
tested against its interaction with datasets). The main effects 
are: OOSM methods; the probability of measurement; and the 
manoeuvring index. 

B. Experimental Results 

¶ All the main effects were found to be significant at the 
5% level of significance (F=18.9, df=5 for methods; 
F=29.4, df=1 for probability of measurement and 
F=31.2, df=1 for manoeuvring index; p-value <0.05 for 
each each effect; 

As shown in Figure 2: 

¶ As shown in Figure 2, COOSM is the best method for 
handling OOSM with an error rate of 6.1%, closely 
followed by BF-KF, FSRD-KF, and MEKF with 
excess error rates of 9.2%, 11.7% and 14.2%, 
respectively. The worst method is SARD-KF, which 
exhibits an error rate of 18.0%. Another poor 
performance (after SARD-KF) is by MR-KF with an 
error rate of 16.8%; 

¶ Tukeyôs multiple comparison tests showed significant 
differences in performances between all the methods at 
the 5% level of significance. 

 

 

¶ For manoeuvring target tracking (Figure 3), COOSM 
outperforms all the other methods when the probability 
of measurement is 0.5. However, its performance with 
BF-KF is comparably when the probability of 
measurement is 0.25. The differences in performance 
among methods are mostly prominent at higher 
probabilities of measurement. Poor performances are 
observed for SARD-KF (for Pr=0.5) and FSRD-KF 
(for Pr=0.25). 

¶ Increases in probability measurement delay are 
associated with increases in performance differences 
between methods. In fact, the performance of all the 
methods degrades with increases in probability of 
measurement. 

 

 

¶ From figure 4, most of the methods have similar RMS 
performance regardless of OOMS. However, this is the 
case up until the 50 seconds time limit. In other words, 
OOSM does not seem to be critical for most of the 
methods for the first 50 seconds (with the exception of 
SARD-KF and FSRD-KF). Thereafter, the difference 
in RMS performances between the methods becomes 
quite prominent. 

¶ Overall, COOSM and BF-KF achieve higher accuracy 
rates with COOSM slightly outperforming BF-KF most 
of the time. 

 

 


