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AbstracH One primary concern of engineers, particularly . Lo . . .
those dealing with target tracking and filtering, is effectively A simple solution is to simply ignore (neglect) or discard

dealing with out-of-sequence measurements (OOSM). Recently, the OOSMin the tracking process. The appropriateness of this
the use of Kalman filters has proven to be of great practical vae ~ @pproach is that it has a natural limitation in that critical
in solving a variety of OOSM problems including multitarget  information is lost due to the discarded OOSM and this can
tracking prediction. In this paper we argue that delayed and lead to degradation in tracking for time critical targets. Other
existing measurements are typically correlated and could be approaches forahling with OOSM include data-rocessing
described by_ajoint distributic_m. Thus, t_he use of a copukbased  or roll back and data buffering. In the rollback approach,
Sppro%ch will tnottonly ?r%wt%e versatile metansb tto rlnodehl thd? sensor reports are stored in memory and the OOSM is used to
ependence structure of both measurements but also handle : :
OOpSM effectively. Benchmarking results on simulated datasets (rji?e:dbirffg:ienszr;)sp?fg ;?:ﬁar?cl;llzjesmtﬁ:afn:inn; r::acgurr]glggstessiﬁ. aThe
igomvgatrhe% ?g iuc:];e%?%é&sogs_ more robust to handling OOSM as buffer with the size buffer greater than the maximum expected
delay of arriving measurements. Both approaches require
Keywordsout-of-sequence measurements, mesénsor data, Significant memory and storage measurements. Also, since the

target tracking, copulas tracker processing always lags behind the curtiemt, both
approaches poses potential problems for -tiesg target
I. INTRODUCTION(HEADING 1) applications.
Within the general framework of mulsensor applications, For time delays, one common approach for dealing with

a difficult step in target tracking and filtering (i.e., the processhe OOSM problem is related to solving a partial differential
of maintainng state estimates of one or several instances @quation and boundary condition equations which do ne¢ ha
objects over a period of time) is the handling of-ofit an explicit solution in general {2; 5; §.
sequence measurements (OOSM). Most of the work on
tracking and filtering has been based on the assumption that For random delays, the problem has been investigated via a
measurements are immediately available an agent. standard Kalman filtering and by augmenting the system
However, it is not difficult to conceive situations in which accordingly [3 8]. Matveev and Savkin [10] consider an
measurements are subject to mayligible delays such that iterative form of state augmentatiéor random delays with a
the lag between measurement and receipt is of sufficienandom lag. Mallicket al [9] address the OOSM problem by
magnitude to have an impact on estimation or predictiorrecalculating the filter through the delayed period. In the same
These masurements can be classified as either constant delaggntext, Larsert al. [6] propose a measurement extrapolation
or random delays with the resulting occurrence of the latteapproximation using past and present esésalf the Kalman
having the potential to cause OOSM. filter (KF) and calculating an optimal gain for this extrapolated
measurement (MHKF). Thomopoulos and Zhang [13]
Handling OOSM represents a challenge for engineers @xamine the case of random delay under the name of fixed
researchers using muliensor target tracking #a The sampling and random delay filter (FSR{F) that is shown to
guestion is how to incorporate these OOSMs in a track that hhs equialent to constraining the lag to a value of 1. Later,
already been updated with a later instance or observation iimrsen et al [6] suggest using delayed measurements to
order to enhance the performance of the tracking system.  calculate a correction term and adding this to the filter
estimate. Zhangt al [15] proposed algorithms that try to
minimise the information stage in an OOSM situation (MS
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KF) Challaet al [4] formulated the OOSM problem in & (X, Xo, € 10 K.
Bayesian framework (BKF). Twala [14] relates OOSM to

the incomplete (miSSing) data prOblem and uses statistical 1 If F., Fy, éFk are Continuousp is unique for every

multiple imputation to deal with OOSM. fixed F and equal€(uy, éu) = F(Fyi(u) , é Wk
o where R, é, ' de the quantiles functions giv¢
Although the vast majority of the above methods marginals and are uniform [0, 1] variables;

understand the solution, most of them fail to recognise the

theoretical basis of the conditional distribution between the 1 If the sequence of rasurementsX, X, € X are
delayed measurements and the measurements that are alfeady independent then the copula function that links t
available (which are sometimes referred tdiaory). ?grlgpa!s lés* the product copulaFg( F,, &) =
1"F2" € kg

If C andFy, F,, é F are differentiable, then the joi
density f &, %, € X corresponding to the join

The major contributions and uniqueness of the wark q
presented in this paper are as follows:

1. We show the robustness of the top five techniques ffor distribution F(x;, X, &) can be written as th
handling OOSM in terms on predictive accuracy for product of the marginal densities and copula der
multi-target tracking; f(xa, Xo, &) =fi(x)) X &KX c(Fy, Fo, &)

, wherefi(x) is the density corresponding E and the
2. We further show how copulasuld be used to deal with copula density is defined as ¢¥C/ (L & F QF
OOSM and how the use of copulas lead to a significant _ - S
improvement in classification performance for mult{ 3. Find the conditional distributiorF(xH) for delayed
target tracking; measurements  conditioned to the history

. . . measurements available as a predictive distribution;
The remainder of the paper is organised as follows. The

copulas strategy is presented in the next sectBmction 3
empirically explores the robustness and accuracy of thé  Predict the delayed measurement from the conditi
proposed approach against existing methods for dealing with  distribution (copula could be used find both the joint
OOSM using simulated data. This section also presents and conditional distributions even if the joint distribut
empirical results from the application of the ensemble is unknown).

procedures. We cleswith conclusions and directions for future
research Fig.1: The copulas algorithm for dealing with OOSM

II. THECOPULASTRATEGY Ill.  EXPERIMENTS

A motivation for copulas is that it exists as a multivariate, B€foré you begin to format your paper, first write and save

distribution function and allows a consistent and flexible'® content as a separate text fieep your text and graphic

modelling of the dependence structure of dealing with OOSNEeS separate until after the text has been formatted and styled.
It offers a convenient representation of arbitrary join 0 not use hard tabs, and limit use of hard returns to only one
distribution functions, with the key property being that the'€turn at the end of a paragraph. Do not add any kind of
specification of the marginal distributions and the dependendAgination anywhere in the paper. Do namber text heads
structure is separated. This is the most important result in thae emplate will do that for you.

copula frameork and is due to [12]. In recent years, copulas Finally, complete content and organizational editing before

modelling has found many successful applications in actuarigbrmatting. Please take note of the following items when
science, survival analysis, hydrology, and with great intensitgroofreading spelling and grammar:
in finance [11].

The generalized copulas algorithm for handling OOSM i#- Experimental Set/p
summaried in Figure 1. However, dr a more detailed
discussion of copulas the reader is referred to Sklar [11] ar}ﬂ,o
Nielsen [L2]

In order to empirically evalia the performance of the
posed coputdased OOSM approach (which from now on
we shall call COOSM) against existing approaches for dealing

with OOSM (FSRDBKF, ME-KF, SARD-KF, MS-KF and BF

1. Consider a sequence of measurements upitstanceg KF), experiments are used on simulated datasets in terms of
Xi, Xo €, ¢ (Xhere k is the delay point) witf Footsquare mean error (RMSE). RMSE is a measure of the

distribution functionH(x,,X,, € waX= P (.0, X,Ox,, 6| differences between values predicted by a model (or an
XOx) and univariate marginal distribution§,(x,), | €Stimator) and the values actually observed. The experiment is
Fo(%) , Bi(%) carried out in order to rank individual OOSM methods and
also assess the impact of deld measurements (at various
time and distance intervals) on a single delay against COOSM
2. A copulasC represents the joint cumulative distributi in terms of position error. Like [4], we assume that the OOSM
function in terms of the margins such that ¥, (., €| can only have a maximum of one lag delay and the data delay
Xi)= C(Ru(x1) , €(x) For all valuesxy, X, & , (ot | is uniformly distributed within the whole raulation period

with probability P, that the current measurement is delayed.



All statistical tests were conducted using the MINITAB

50 -

statistical software program. Analyses of variance, using the j; | —;_,B;,FRK,:F I;iﬁﬁﬁ :?IDEOZL]
general linear model procedure were used to examine the main |
effects and their respective interactions. This was done using a ;0 ]
threeway repeated measures design (where the effects werg ,; |
tested against its interaction with datasets). The main effects ;. -
are: OOSM methods; the probability of measurement; and th@ 15 -
manoeuvrig index. 10
0.5 A
B. Experimental Results 00
1 All the main effectsvere found to be significant at the R
5% level of significance (F=18.9, df=5 for methods; 5o
F=29.4, df=1 for probability of measurement and 45 ——DF-KF  —B—FSRD-KF  ——d— ME-KF
F=31.2, df=1 fomanoeuvringndex; pvalue <0.05 for 40 woties MR-KF e SARD-KF g COOSI
each ach effe¢ = 0
>
As shown in Figure 2: Y
1 As shown in Figure 2C00SM is the best method for £ "
handling OOSM with an error rate of 6.1%, closely 0.5 -
followed by BFKF, FSRDKF, and MEKF with 00
excess error rates of 9.2%, 11.7% and 14.2%, 0 1020 30 a0, 00, 60 70 8090 100
respectively. The worst method is SARE, which Fig. 3: RMS performance in the case of highly manoeuvring target
exhibits an error rate of 18.0%. Another poor wttih single delay 0SSM (Pr=0.5 and 0.25; manoeuvring index =1}
performance (after SARBF) is by MRKF with an i o
error rate of 18%: 1 From figure 4, most of the methods have similar RMS

performance regardless of OOMS. However, this is the

T Tukeydos multiple compar i soncadesuntsthessh tetiche limit. & bthef iorig n t

differences in performances between all the methods at
the 5% level of significare
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Fig. 2 Performance of 00SM Methods

1 For manoeuvring target trackingigure 3) COOSM
outperforms all the other methods when the probability
of measurement is 0.5. However, its performance with
BF-KF is comparably when the probability of
measurement is 0.25. The differences in perfocea
among methods are mostly prominent at higher
probabilities of measurement. Poor performances are
observed for SAREKF (for P,=0.5) and FSREKF
(for P=0.25).

1 Increases in probability measurement delay are
associated with increases in performance diffees
between methods. In fact, the performance of all the
methods degrades with increases in probability of
measurement.
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OOSM does not seem to be critical for most of the

methods for the first 50 seconds (with the exception of

SARD-KF and FSREKF). Thereafter, the difference

in RMS performances between the methods becomes
quite prominent.

0

15.0 ‘| 1 Ovemll, COOSM and BFKF achieve higher accuracy
\ rates with COOSM slightly outperforming B&F most
0 l of the time.
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